

CARDIOVASCULAR COMPLICATIONS OF CANCER TREATMENT FOCUS ON EARLY DETECTION

Aaron L Sverdlov

MBBS, PhD, FRACP, FCSANZ, FESC, FHFA, FACC

Heart Foundation Future Leader Fellow

A/Prof & Director of Heart Failure

Co-Director, Cancer and the Heart Program

University of Newcastle, HMRI, HNELHD, John Hunter Hospital, Calvary Mater Newcastle

Why discuss heart disease and cancer? Let's consider...

- These are by far the two most common disease conditions in the developed world
- Cardiac disease may pre-exist cancer therapy or may be caused/exacerbated by it
- Cancer therapy is more effective than ever before at treating cancer, but has a price...
- Therapeutic choices for both cardiology and oncology have significant overlap

Cancer and the heart

- Cancer in the Heart
 - Primary Cardiac Tumours: benign and malignant
 - Metastases from other tumours
- Cardiovascular complications of cancer therapy (termed cardiooncology)
 - Survivors of cancer years ago
 - Active Cancer Treatment and Heart Disease
 - Medical therapy
 - Radiotherapy

Not a new problem...

DAUNOMYCIN, AN ANTITUMOR ANTIBIOTIC, IN THE TREATMENT OF NEOPLASTIC DISEASE

Clinical Evaluation with Special Reference to Childhood Leukemia

CHARLOTTE TAN, MD, HIDEKO TASAKA, MD, KOU-PING YU, MD, M. LOIS MURPHY, MD, AND DAVID A. KARNOFSKY, MD

Daunomycin is a new antibiotic in the anthracycline group obtained from Streptomyces peucetius. It consists of a pigmented aglycone (daunomycinone) in glycoside linkage with an amino sugar (daunosamine). Differences in the biological effects of daunomycin, which reacts with DNA, and actinomycin D which complexes with DNA in a different manner to inhibit RNA production, are discussed. The toxic effects of daunomycin are a severe local reaction if the drug extravasates, bone marrow depression resulting in leucopenia, anemia, thrombocytopenia and bleeding, fever, oral ulcers and alopecia. In patients receiving maintenance doses of daunomycin the development of tachypnea, tachycardia pulmonary insufficiency, heart failure and hypotension possibly is associated with daunomycin but the evidence is unclear. Sixty per cent of children with leukemia obtained brief complete or partial hematological remissions from a single course of daunomycin. The remission could be prolonged by maintenance therapy. Daunomycin is temporarily effective in some cases of neuroblastoma, reticulum cell sarcoma and rhabdomyosarcoma.

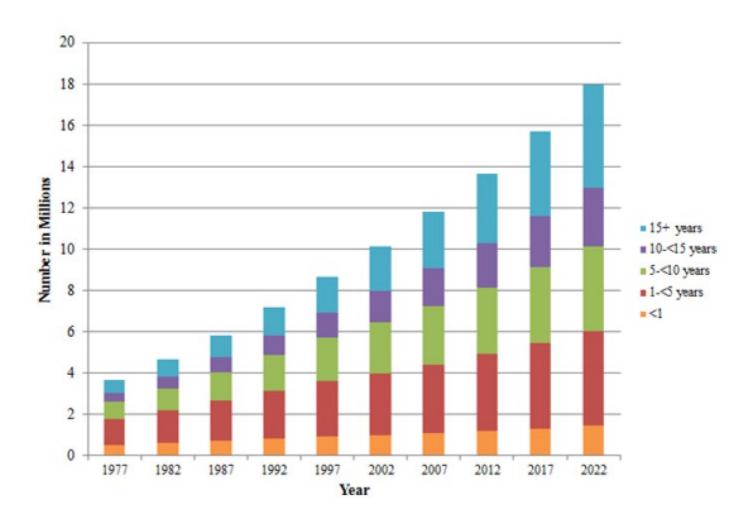
How to deal with the "collateral damage" caused by oncologists & haematologists

Cardio-oncology – new field

1st International Conference on Cancer and the Heart, Houston, Texas, 2010

Patient comment

"When I was diagnosed with cancer I felt I could cope and was very positive, but when they said my heart was failing as well, this was too much to bear."

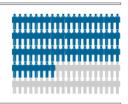


Improvements in longevity after cancer

Site	1975 (%)	2007 (%)	% increase
Overall	50	67	17
Childhood	30	79	49
Prostate	67	99	32
Breast	75	90	15
Colon	51	65	14
Lung	12	16	4

- Dramatic improvements in early detection and adjuvant therapy → significant survival gains
- Approx 30 million cancer survivors worldwide
- Increased risk of the late-effects of cancer therapy
- Commonest childhood cancer acute lymphoblastic leukaemia
 - 5 year survival in 1983 < 10%
 - · 2012 > 80%

Estimated and projected cancer survivors in USA


Changing paradigm Cancer survival to cancer survivorship

Estimated number of new cancer cases diagnosed in 2018

Estimated number of deaths from cancer in 2018

Chance of surviving at least 5 years (2009–2013)

68%

People living with cancer at the end of 2012 (diagnosed in the 5 year period 2008 to 2012)

410,530

Estimated number of new cases of lymphoma diagnosed in 2018

Estimated % of all new cancer cases diagnosed in 2017

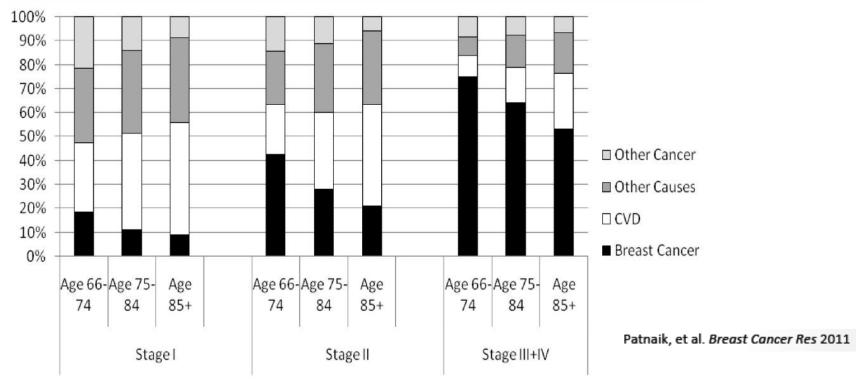
4.6%

Estimated number of deaths from lymphoma in 2018

Estimated % of all deaths from cancer in 2017

3.1%

Chance of surviving at least 5 years (2010-2014)


76%

People living with lymphoma at the end of 2013 (diagnosed in the 5 year period 2009 to 2013)

21,103

Is there a problem?

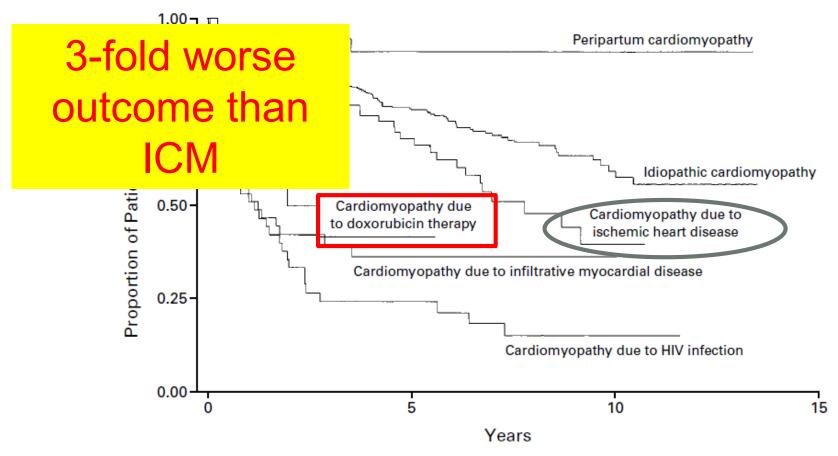
Among 63566 breast cancer patients, CVD was the leading cause of death, followed by breast cancer

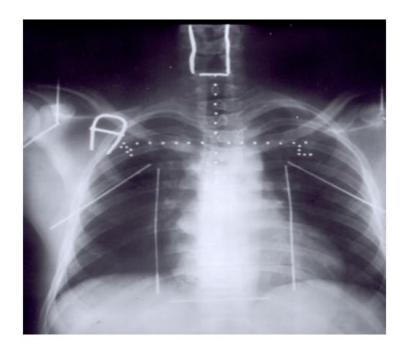
Among women who died as a result of CVD, only 25% were also categorized as having CVD as a co-morbid condition at the time of breast CA diagnosis

Risk of developing severe health conditions among cancer survivors vs siblings

Condition		Survivors (N = 10,397)	Relative Risk (95% CI)			
		perc	ent			
Table 1. Risk of ca Study)	rdiac disease and cardiac ri	isk factors in long-term su	rvivors of childhood cancer	vs healthy siblings (Childhoo	d Cancer Survivor	
	CAD ⁹	Heart failure ⁹	Hypertension ¹⁰	Diabetes ¹⁰	Dyslipidemia ¹⁰	
RR (95% CI)	10.4 (4.1-25.9) 10,397	15.1 (4.8-47.9) 10,397	1.9 (1.6-2.2) 8599	1.7 (1.2-2.3) 8599	1.6 (1.3-2.0) 8599	
CAD, coronary as	rtery disease; CI, confidence ir	nterval; RR, relative risk.				
Hearing loss	not corrected by aid	1.96	0.36	6.3 (3.3–11.8)		
Legally blind	or loss of an eye	2.92	0.69	5.8 (3.5-9.5)		
Ovarian failu	re‡	2.79	0.99	3.5 (2.7-5.2)		

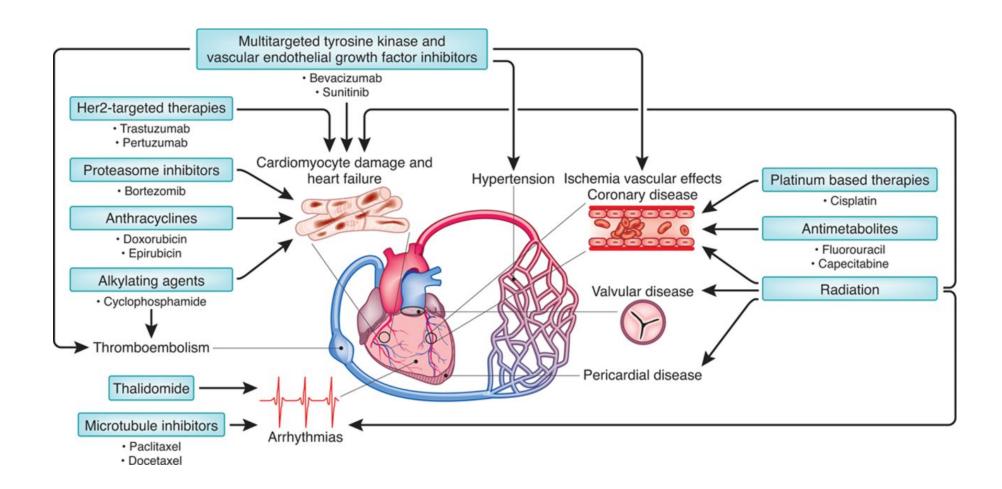
Cancer Treatment and Heart Failure Mortality




Figure 1. Adjusted Kaplan-Meier Estimates of Survival According to the Underlying Cause of Cardiomyopathy.

Only idiopathic cardiomyopathy and cardiomyopathy due to causes for which survival was significantly different from that in patients with idiopathic cardiomyopathy are shown.

Chemotherapy-induced cardiomyopathy



Anthracycline Cardiomyopathy

Mantle Radiotherapy

Which drugs are the culprits?

Cardiotoxicity of Antineoplastics

Antitumour antibiotics Eg Anthracycline

- Cardiomyopathy, arrhythmias, CHF
- Cumulative dose

Microtubule targeting agents

Eg Taxanes

- · Bradycardia, arrhythmias, CHF, MI
- Typically reversible, may potentiate anthracycline toxicity

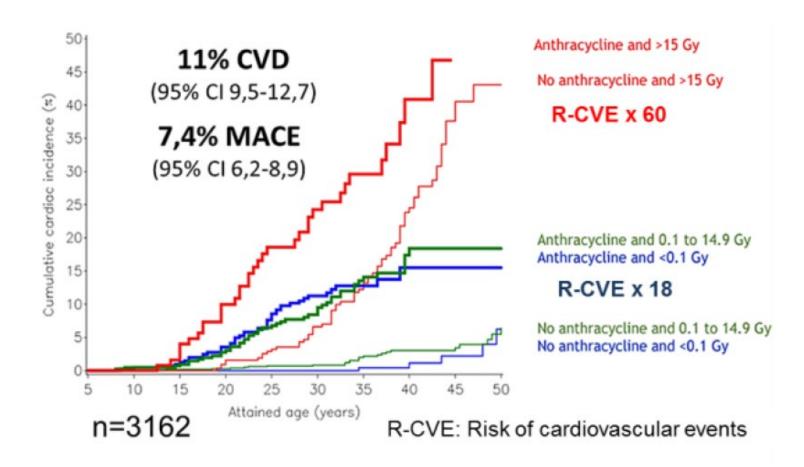
Alkylating agents

Eg Cisplatin, Cyclophosphamide

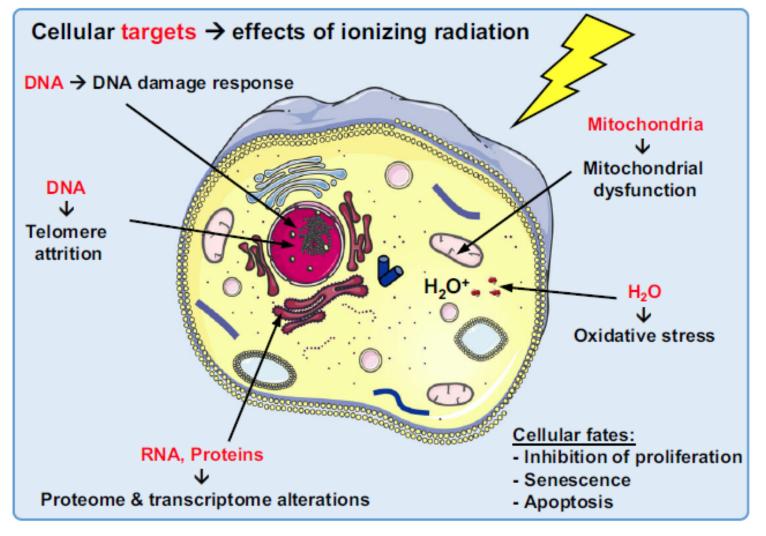
- Arrhythmias, heart block, CHF
- Mechanism: Electrolyte abnormalities; endothelial capillary damage

Antimetabolites Eg Fluorouracil

- Cardiac failure, MI
- Likely Mechanism: Coronary vasospasm


How serious is the problem? △ LVEF

Chemotherapy agents	Incidence (%)							
Anthracyclines (dose dependent)								
Doxorubicin (Adriamycin) 400 mg/m ² 550 mg/m ² 700 mg/m ²	3-5 7-26 18-48							
Idarubicin (>90 mg/m²)	5-18							
Epirubicin (>900 mg/m²)	0.9-11.4							
Mitoxanthone >120 mg/m²	2.6							
Liposomal anthracyclines (>900 mg/m²)	2							
Alkylating agents								
Cyclophosphamide	7-28							
Ifosfamide <10 g/m² 12.5–16 g/m²	0.5 17							
Antimetabolites								
Clofarabine	27							
Antimicrotubule agents								
Docetaxel	2.3-13							
Paclitaxel	<1							


Chemother	Incidence (%)						
Monoclonal antibodies							
Trastuzuma	1.7-20.1						
Bevacizumab 30% incidence of HT							
Pertuzumal	0.7-1.2						
Small molecule tyrosine kinase inhibitors							
Sunitinib 28% incidence of ↓ LVEF							
Pazopanib Over 40% incidence of H							
Sorafenib	4-8						
Dasatinib		2-4					
Imatinib me	sylate	0.2-2.7					
Lapatinib		0.2-1.5					
Nilotinib		1					
Proteasom	e inhibitors						
Carfilzomib	11-25						
Bortezomib	2-5						
Miscellanous							
Everolimus		<1					
Temsirolimu	<1						

www.escardio.org/guidelines

Is it just the drugs?

Compound effects: RTx and CTx, esp anthracyclines

Spetz et al., Curr Treat Options Cardio Med (2018) 20: 31

It's getting even more complex

HER2 targeted therapies

- Trastuzumab
- Pertuzumab
- T-DM1
- Lapatinib

VEGF-tyrosine kinase inhibitors

- Bevacizumab
- Sunitinib
- Sorafenib
- Pazopanib
- Axitinib
- Regorafanib
- Cabozantinib

Raf-MEK pathway inhibitors

- Debrafanib
- Vemurafenib
- Trametinib

Proteosomal inhibitors

- Bortezomib
- Carfilzomib
- Ixazomib

BCR-Abl inhibitors

- · Imatinib
- Nilotinib
- Dasatanib
- Bosutinib
- Ponatanib

The TKI market: Kinase inhibitor patents: 1988-2005

Immunotherapies

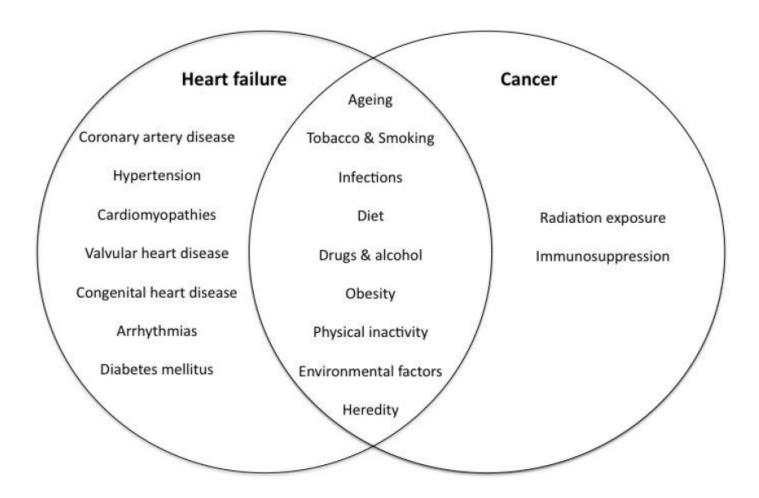
Data courtesy of HFSA

- Nivolumab
- Ipilumimab
- Pembrolizumab
- Atezolizumab
- Durvalumab
- Avelumab

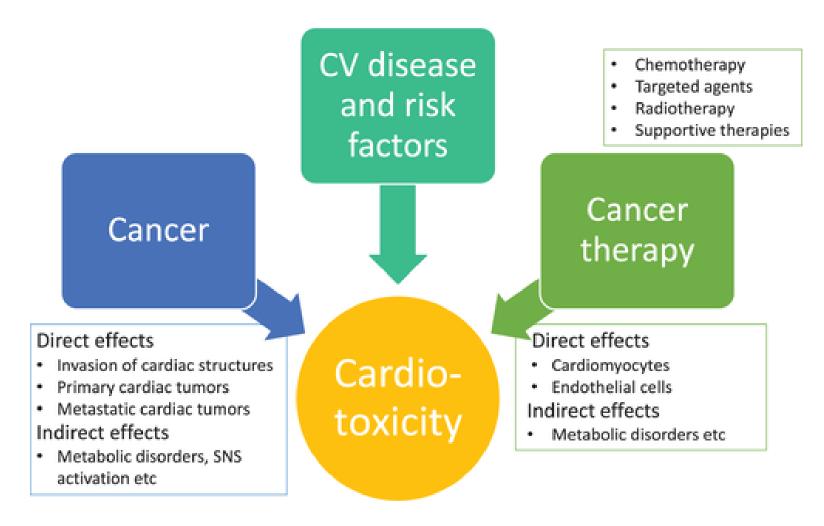
BTK inhibitors

Ibrutinib

CDK 4/6 inhibitors


- Palbociclib
- Ribociclib

Targets of TKIs


Imatinib Nilotinib	Dasatinib					
ABL	ABL	TXK	LIMK2			
ARG	ARG	DDR1	MYT1			
BCR-ABL	BCR-ABL	DDR2	PTK6/Brk			
KIT	KIT	ACK	QIK			
PDGFR	PDGFR	ACTR2B	QSK			
DDR1	SRC	ACVR2	RAF1			
NQO2	YES	BRAF	RET			
	FYN	EGFR/ERBB1	RIPK2			
	LYN	EPHA2	SLK			
	HCK	EPHA3	STK36/ULK			
	LCK	EPHA4	SYK			
	FGR	EPHA5	TA03			
	BLK	FAK	TESK2			
	FRK	GAK	TYK2			
	CSK	GCK	ZAK			
	BTK	HH498/TNNI3K				
	TEC	ILK				
	BMX	LIMK1				

Plus a number of non kinase targets have now been identified

Common risk factors in HF & cancer

Why is there a problem?

Cancer and the Heart - elusive balance

CANCER

Cell division

Increased cell number

Angiogenesis

Increased metabolic activity

Drug/toxin resistance

HEART DISEASE

Failure of cell division/ tissue repair Cell loss

Ischaemia

Impaired/decreased energetic efficiency

Increased sensitivity to toxins

Summary

- Advancement in diagnostic tools and therapies have dramatically improved cancer survival
- Adverse cardiac effects of conventional therapies remain
- Newer adjuvant therapies interfere with molecular pathways crucial to normal cardiovascular health
 - Numerous more drugs in the pipeline
- The cancer survivor population is aging with a higher prevalence of traditional CVD risk factors
- If there trends continue, further improvements in cancer-specific and overall survival may be offset by increased therapy-associated CV mortality

What can we do as physicians?

What can we do about the problem?

Early:

- Identification of patients at greatest risk
- Prevention
- Early detection and treatment

Ongoing:

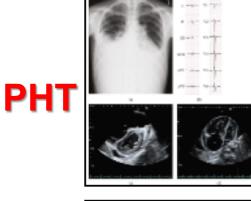
- Improved service delivery
- More dedicated service
- Long-term survivorship clinics

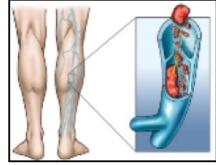
Definition of Cardiotoxicity

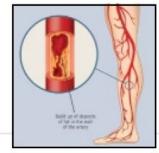
- Lack of consensus
- Most current definitions incorporate some/all of the following:
 - Cardiomyopathy in terms of a reduction in LVEF
 - Symptoms associated with HF
 - Signs associated with HF, such as S3 gallop, tachycardia, or both
 - Reduction in LVEF from baseline
 - in the range of ≤ 5% to < 55% with signs or symptoms of HF
 - in the range of ≥ 10% to < 55% without signs or symptoms of HF
- National Cancer Institute (Singapore)

Toxicity that affects the heart

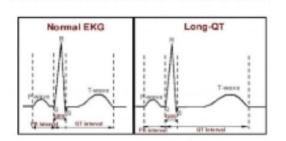
Not just Heart Failure


ΗF


HT

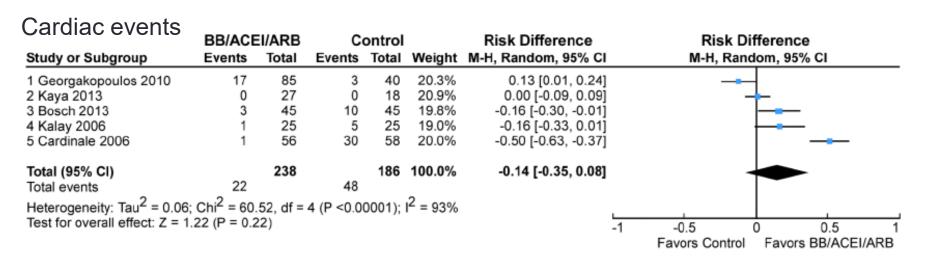


Ischaemia



PAD

QT prolongation Arrhythmias


Prevention of cardiotoxicity

		Med age	ian		o. of tients					Baseline LV	EF, % (SD)	N (%)				
Study	Exp. drug	Ехр	Ctrl	Ex	p Ctr	l Malignancy (%)	Anthracycline	Definition of LV dysfunction	Definition of cardiac events*	Ехр	Ctrl	Radiationt	HTN	HLD	DM	F/U (month)
Kalay et al 2006 ²⁷	Carvedilol	46.8	49.0	25	25	Breast cancer 34 (68) Lymphoma 9 (18) Others 7 (14)	Doxorubicin Epirubicin‡	LVEF <50%	Heart failure	70.6 (8.0)	69.7 (7.3)	0 (0)	NR	NR	NR	6
Cardinale et al 2006 ²⁸	Enalapril	47	44	56	58	Acute leukaemia 15 (13) Breast cancer 29 (25) Ewing's sarcoma 4 (4) Hodgkin lymphoma 10 (9) Non-Hodgkin lymphoma 39 (34) Multiple myeloma 17 (15)	Epirubicin Idarubicin Daunorubicin§	LVEF <50% and >10% LVEF reduction	Sudden death Cardiac death Heart failure Acute pulmonary oedema, Arrhythmia requiring treatment	61.1 (3.2)	61.8 (4.3)	37 (32)	7 (6)	4 (4)	2 (2)	12
Georgakopoulos <i>et al</i> 2010 ²⁹	Metoprolol	51.0	49.1	42	40	Hodgkin lymphoma 60 (48) Non-Hodgkin Lymphoma 65 (52) Within metoprolol group Hodgkin lymphoma 21 (50) Non-Hodgkin lymphoma 21 (50)	Doxorubicin¶	LVEF <50% and >10% LVEF reduction	Sudden death Cardiac death Heart failure Bradycardia Arrhythmia requiring treatment	65.7 (5.0)**	67.6 (7.1)**	26 (21)	30 (24)	35 (28)	19 (15)	12
	Enalarpril	47.4	49.1	43	40	Hodgkin lymphoma 60 (48) Non-Hodgkin lymphoma 65 (52) Within enalarpril group Hodgkin lymphoma 19 (44) Non-Hodgkin lymphoma 24 (56)	Doxorubicin¶	LVEF <50% and >10% LVEF reduction	Sudden death Cardiac death Heart failure Bradycardia Arrhythmia requiring treatment	65.2 (7.1)**	67.6 (7.1)**	26 (21)	30 (24)	35 (28)	19 (15)	12
Bosch <i>et al</i> 2013 ³⁰	Carvediloland Enalapril	49.7	50.9	9 45	45	Acute leukaemia 36 (40) Hodgkin lymphoma 9 (10) Non-Hodgkin lymphoma 23 (26) Multiple myeloma 22 (24)	Idarubicin Daunorubicin††	LVEF <45% or ≥10% LVEF reduction	Death‡‡ Heart failure‡‡ Final LVEF <45%	61.7 (5.1)	62.6 (5.4)	16 (18)	14 (16)	10 (11)	4 (4)	6
Kaya et al 2013 ³¹	Nebivolol	51.4	50.5	5 27	18	Breast cancer 45 (100)	Doxorubicin Epirubicin §§	NR	Cardiac death Bradycardia Heart failure requiring hospitalisation	63.8 (3.9)	66.6 (5.5)	12 (27)	10 (22)	0 (0)	4 (9)	6
Dessi <i>et al</i> 2013 ³²	Telmisartan	52.9	53	25	24	Breast cancer 18 (37) Endometrium cancer 21 (43) Non-Hodgkin lymphoma 3 (6) Non-small cell lung cancer 1 (2) Ovarian cancer 5 (10) Salivary gland cancer 1 (2)	Epirubicin ¶¶	NR	NR***	66.0 (7.0)	66.0 (5.0)	0 (0)	0 (0)	NR	0 (0)	12

Yun et al, Postgrad Med J 2015;91:627-33

Prevention of cardiotoxicity

LVEF	BB/ACEI/ARB					BB/ACEI/ARB Control Mean D				ntrol		Mean Difference	Mean Difference
Study or Subgroup	Mean		Total	Mean			Weight	IV, Random, 95%CI	IV, Random, 95% CI				
1 Georgakopoulos 2010 2 Dessi 2013 3 Bosch 2013 4 Kaya 2013 5 Cardinale 2006 6 Kalay 2006	63.6 68.0 61.5 63.8 62.4 69.7	4.00 6.30 3.90 3.50	85 25 42 27 56 25	66.6 67.0 59.3 57.5 48.3 52.3	6.70 5.00 3.30 5.60 9.30 14.00	40 24 37 18 58 25	17.1% 17.1% 17.2% 16.9% 17.1% 14.7%	-3.00 [-5.61, -0.39] 1.00 [-1.54, 3.54] 2.19 [0.01, 4.37] 6.30 [3.32, 9.28] 14.10 [11.54, 16.66] 17.40 [11.43, 23.37]	+ + - -				
Total (95% CI) Heterogeneity: Tau ² = 44 Test for overall effect: Z				df = 5 (P	< 0.00		100.0% I ² = 96%	6.06 [0.54, 11.58] -50	-25 0 25 50 Favors Control Favors BB/ACEI/ARB				

Trials of cardioprotection

- OVERCOME
 - Haemato-oncological pts receiving ACs
 - 1º prevention carvedilol and enalapril
 - Prevented LVEF reduction
- PRADA
 - Breast cancer receiving epirubicin (HER2-)
 - Candesartan prevented small LVEF fall
 - Metoprolol no benefit
- CECCY trial
 - Breast cancer receiving anthracyclines (HER2-)
 - Carvedilol no benefit on LVEF reduction (1º endpoint)
 - Carvedilol did significantly reduce troponin rise and new LV diastolic dysfunction
- MANTICORE
 - HER2+ breast cancer pts randomised to Bisoprolol, Perindopril or placebo
 - No effect on trastuzumab-induced LV remodelling (1° endpoint)
 - Both reduced LVEF decline reduction (2° endpoint)
- Kentucky study
 - HER2+ breast cancer pts randomised to Carvedilol, Lisinopril or placebo
 - No reduction in rate of cardiotoxicity in entire cohort
 - Significant reduction in cohort receiving AC followed by trastuzumab
- ICOS-ONE
 - Enalapril primary prevention vs biomarker guided

Small studies
Low risk patients
Surrogate end points

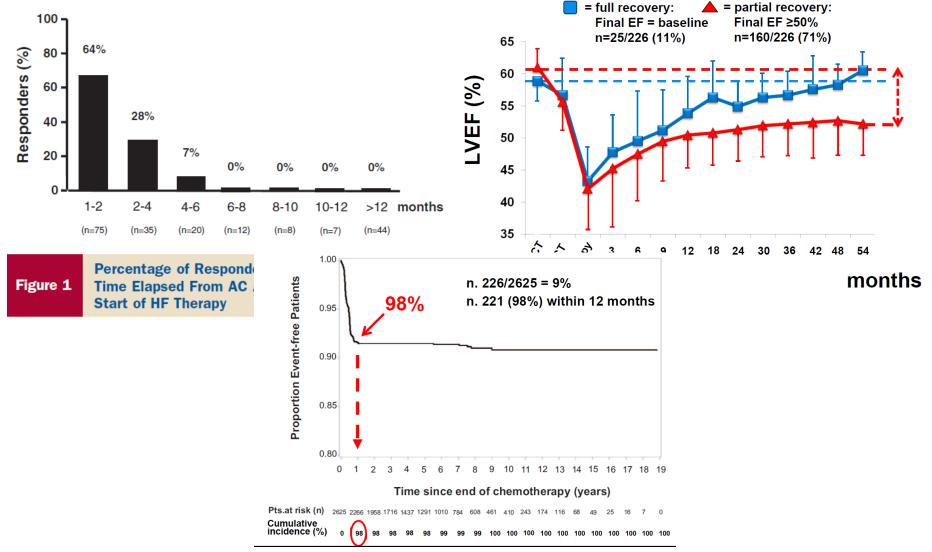
Ongoing trials

PROACT Trial

Multicentre UK trial
Primary prevention with Enalapril in
breast cancer patients receiving
epirubicin
ClinTrials.gov: NCT03265574
EudraCT: 2017-001094-16
Lead by Dr David Austin
James Cook University Hospital

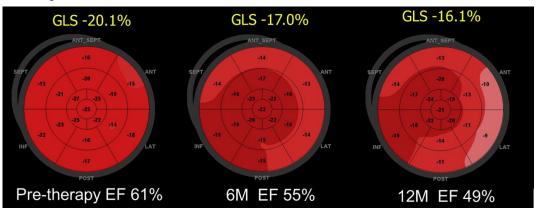
Middlesborough, UK

SUCCOUR Trial

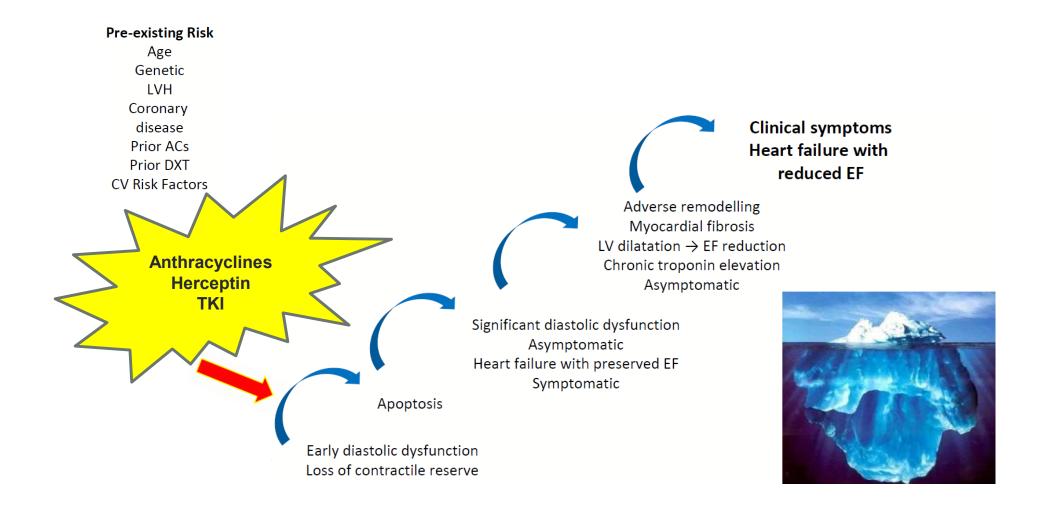

JACC: CARDIOVASCULAR IMAGING © 2018 BY THE AMERICAN COLLEGE OF CARDIOLOGY FOUNDATION PUBLISHED BY ELSEVIER

Rationale and Design of the Strain Surveillance of Chemotherapy for Improving Cardiovascular Outcomes

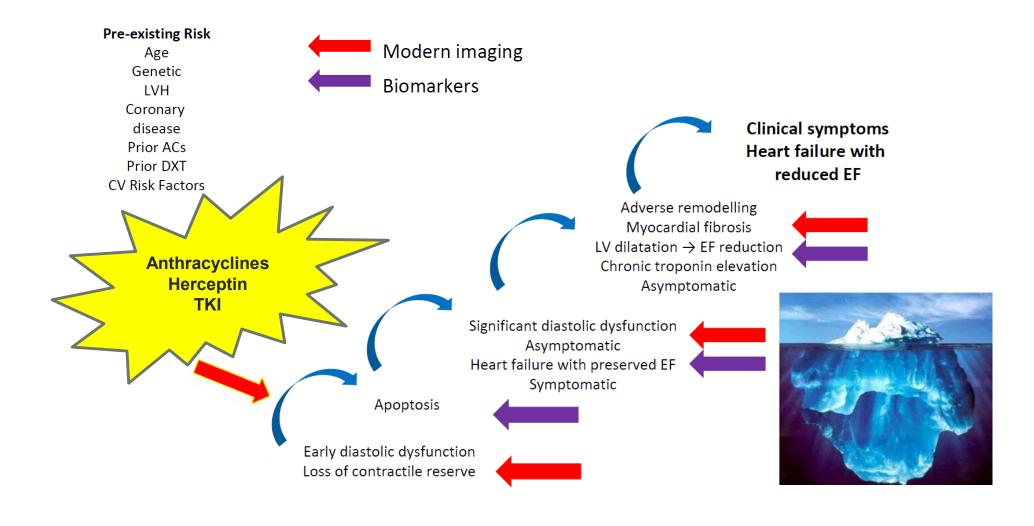
The SUCCOUR Trial


Tomoko Negishi, MD, Paaladinesh Thavendiranathan, MD, SM, Kazuaki Negishi, MD, PhD, Thomas H. Marwick, MBBS, PhD, MPH, on behalf of the SUCCOUR investigators

Importance of early detection



Focus has been on LV systolic dysfunction/EF


- LVEF not sensitive for preclinical heart disease
- In chronic cardiotoxicity with AC: E/A ratio, DT and IVRT were all deranged in 50% of patients Rx with AC, when LVEF was still normal {Tjeerdsma G,et al Heart 1999:81:419}
- Novel measures (myocardial deformation) Global longitudinal strain (GLS)
 - Predicts development of LV dysfunction after 12 months

Cardiotoxicity Progression: heart failure cascade

Combining Biomarkers and Imaging

Biomarkers in chemotherapy-induced cardiotoxicity

 Most biomarker studies were done in setting of anthracycline chemotherapy only

Troponins

- Mixed results, although on balance increase in Trop is associated with reduction in cardiac function and/or cardiotoxicity
- Persistent increase in Trop predicts subsequent LVEF decline
- Downside: implies myocyte damage has already occurred

Biomarkers in chemotherapy-induced cardiotoxicity

BNP

- Mixed results
- Not as robust as Trop at predicting cardiotoxicity per se
- Good correlation with LVEF
- But...does not always predict change in LVEF

Other biomarkers – limited data

- MPO (oxidative stress)
- hs-CRP (inflammation)
- Placental growth factor (angiogenesis)
- Soluble Flt-1 (vascular remodelling)
- GDF-15 (inflammation and oxidative stress)

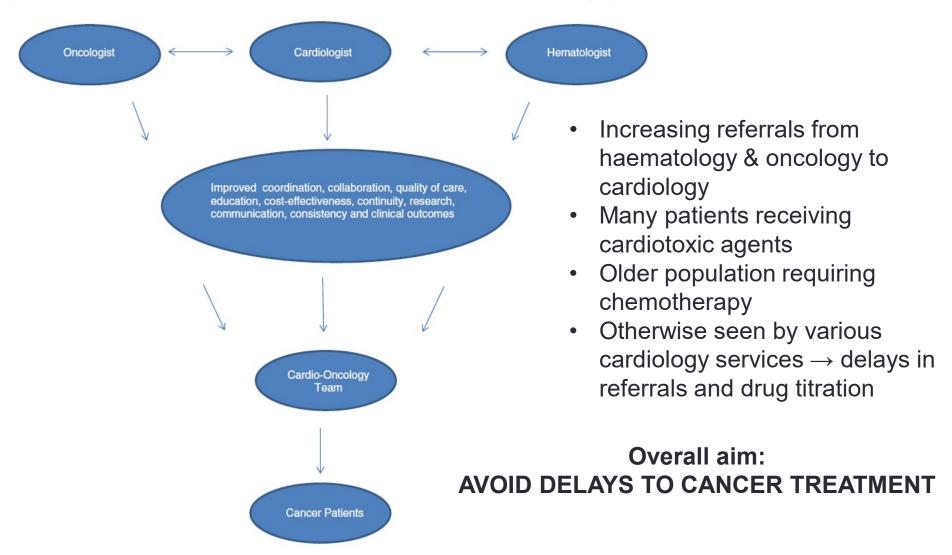
What do guidelines tell us

2016 ESC Position Paper on cancer treatments and cardiovascular toxicity developed under the auspices of

The Task Force for cancer treatments and cardiovascular toxicity of the European Society of Cardiology (ESC)

Technique	Currently available diagnostic criteria	Advantages	Major limitations
Echocardiography: -3D-based LVEF -2D Simpson's LVEF -GLS	 LVEF: >10 percentage points decrease to a value below the LLN suggests cardiotoxicity. GLS: >15% relative percentage reduction from baseline may suggest risk of cardiotoxicity. 	Wide availability. Lack of radiation. Assessment of haemodynamics and other cardiac structures.	 Inter-observer variability. Image quality. GLS: inter-vendor variability, technical requirements.
Nuclear cardiac imaging (MUGA)	>10 percentage points decrease in LVEF with a value <50% identifies patients with cardiotoxicity.	Reproducibility.	Cumulative radiation exposure. Limited structural and functional information on other cardiac structures.
Cardiac magnetic resonance	Typically used if other techniques are non-diagnostic or to confirm the presence of LV dysfunction if LVEF is borderlines.	 Accuracy, reproducibility. Detection of diffuse myocardial fibrosis using T1/T2 mapping and ECVF evaluation. 	 Limited availability. Patient's adaptation (claustrophobia, breath hold, long acquisition times).
Cardiac biomarkers: - Troponin I - High-sensitivity Troponin I - BNP - NT-proBNP	 A rise identifies patients receiving anthracyclines who may benefit from ACE-Is. Routine role of BNP and NT- proBNP in surveillance of high- risk patient needs futher investigation. 	 Accuracy, reproducibility. Wide availability. High-sensitivity. 	 Insufficient evidence to establish the significance of subtle rises. Variations with different assays. Role for routine surveillance not clearly established.

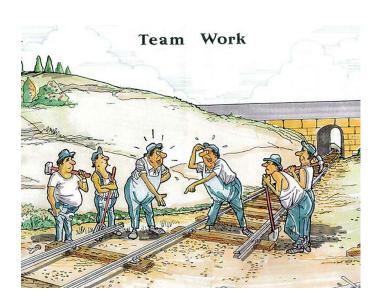
Criteria for a clinically useful biomarker


- Can the clinician measure it?
 - Accurate & reproducible
 - Fast
 - Reasonable cost
- Does it add new information?
 - Strong and consistent association with disease and/or outcomes
 - Cut-off values/ranges can be defined
- Will it help with management?

"If it costs less than 20 bucks, it's a lab test. If it costs more than 20 bucks, it's a biomarker."

Service delivery – cardio-oncology

- Dedicated sub-service as part of heart failure program
- Multidisciplinary clinic even more important than with other programs – heart is seldom the only organ affected!
- Need to be ready/anticipate progressive increase in service utilization


Why dedicated cardio-oncology service?

Challenges in cardio-oncology

- Patient priorities treatment of cancer vs cardio protection
- Lack of formal training/guidelines
- New treatment modalities with wide ranging forms of cardiovascular toxicities
- Lack of mechanistic studies for new treatment modalities
- A team approach

Gaps in evidence

Our Cancer & the Heart Program

- Combined clinical and research program
- First full bench-to-bedside program in HNE and in Australia
- In vitro cell lines to assess mechanisms of cardiovascular toxicities of chemotherapy
- Exosomes: Identify early exosomal biomarkers in response to chemotherapy released from human cardiovascular cell lines.
- Animals effects of cancer therapies on development of cardiotoxicity
- Humans –novel + established biomarkers +/- new imaging for prediction and early detection of cardiotoxicity
- **Humans** does heart failure engender increased cancer risk?
- Service improvements in delivery of care

Our Program

- Research support from
 - Heart Foundation
 - NSW Ministry of Health
 - University of Newcastle
- Support from Administration and Executive
 - HNELHD
 - Cancer Network HNE
 - Cancer Clinicians & Cardiologists
 - Psycho-oncology Co-operative Research Group

We are looking for new collaborators

Acknowledgements

University of Newcastle:

A/Prof Doan Ngo

Ms Rossana Untaru

Ms Kelly Chen

Ms Amanda Croft

Prof Andrew Boyle and his lab

Adelaide:

Prof John Horowitz

Prof Robyn Clark

Dr Saifei Liu

USA:

Prof Doug Sawyer

Prof Wilson Colucci

UK:

Dr Alex Lyon

Cancer Network:

Dr Tony Proietto

Dr Craig Gedye

Dr Nick Zdenkowski

Dr Ina Nordman

Prof Philip Rowlings

Dr Wojt Jankowski

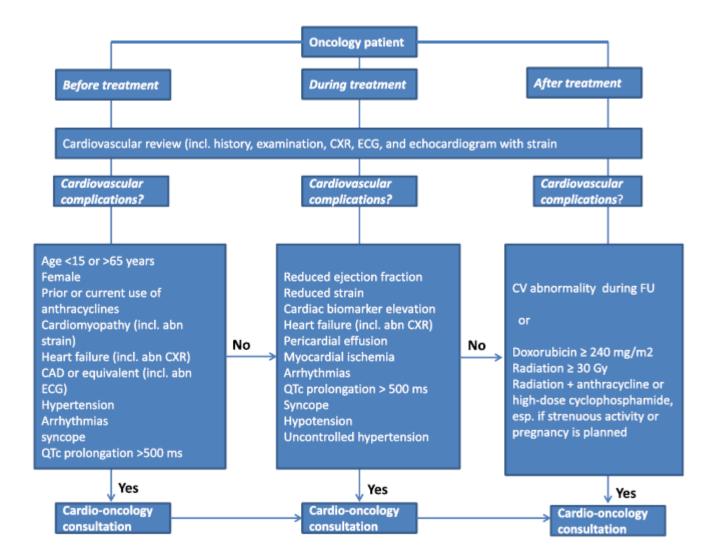
A/Prof Jarad Martin

Prof Rodney Scott

Prof Steven Ackland

Prof Jennifer Martin

CMN Cardiology:


Dr Angela Worthington

Dr Stuart Murch

PoCoG:

Prof Brian Kelly Dr Joanne Shaw

Mayo cardio-oncology clinic model

